characterization of lie higher derivations on $c^{*}$-algebras

Authors

a. r. janfada‎

h. saidi

m. mirzavaziri

abstract

let $mathcal{a}$ be a $c^*$-algebra and $z(mathcal{a})$ the‎ ‎center of $mathcal{a}$‎. ‎a sequence ${l_{n}}_{n=0}^{infty}$ of‎ ‎linear mappings on $mathcal{a}$ with $l_{0}=i$‎, ‎where $i$ is the‎ ‎identity mapping‎ ‎on $mathcal{a}$‎, ‎is called a lie higher derivation if‎ ‎$l_{n}[x,y]=sum_{i+j=n} [l_{i}x,l_{j}y]$ for all $x,y in  ‎mathcal{a}$ and all $ngeqslant0$‎. ‎we show that‎ ‎${l_{n}}_{n=0}^{infty}$ is a lie higher derivation if and only if‎ ‎there exist a higher derivation‎ ‎${d_{n}:mathcal{a}rightarrowmathcal{a}}_{n=0}^{infty}$ and a‎ ‎sequence of linear mappings ${delta_{n}:mathcal{a}rightarrow‎ ‎z(mathcal{a})}_{n=0}^{infty}$‎ ‎such that $delta_0=0$‎, ‎$delta_n([x,y])=0$ and $l_n=d_n+delta_n$ for every‎ ‎$x,yinmathcal{a}$ and all $ngeq0$‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Characterization of Lie higher Derivations on $C^{*}$-algebras

Let $mathcal{A}$ be a $C^*$-algebra and $Z(mathcal{A})$ the‎ ‎center of $mathcal{A}$‎. ‎A sequence ${L_{n}}_{n=0}^{infty}$ of‎ ‎linear mappings on $mathcal{A}$ with $L_{0}=I$‎, ‎where $I$ is the‎ ‎identity mapping‎ ‎on $mathcal{A}$‎, ‎is called a Lie higher derivation if‎ ‎$L_{n}[x,y]=sum_{i+j=n} [L_{i}x,L_{j}y]$ for all $x,y in  ‎mathcal{A}$ and all $ngeqslant0$‎. ‎We show that‎ ‎${L_{n}}_{n...

full text

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Lie $^*$-double derivations on Lie $C^*$-algebras

A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

full text

Lie-type higher derivations on operator algebras

 Motivated by the intensive and powerful works concerning additive‎ ‎mappings of operator algebras‎, ‎we mainly study Lie-type higher‎ ‎derivations on operator algebras in the current work‎. ‎It is shown‎ ‎that every Lie (triple-)higher derivation on some classical operator‎ ‎algebras is of standard form‎. ‎The definition of Lie $n$-higher‎ ‎derivations on operator algebras and related pot...

full text

Local higher derivations on C*-algebras are higher derivations

Let $mathfrak{A}$ be a Banach algebra. We say that a sequence ${D_n}_{n=0}^infty$ of continuous operators form $mathfrak{A}$ into $mathfrak{A}$ is a textit{local higher derivation} if to each $ainmathfrak{A}$ there corresponds a continuous higher derivation ${d_{a,n}}_{n=0}^infty$ such that $D_n(a)=d_{a,n}(a)$ for each non-negative integer $n$. We show that if $mathfrak{A}$ is a $C^*$-algebra t...

full text

Nonlinear $*$-Lie higher derivations on factor von Neumann algebras

Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.

full text

My Resources

Save resource for easier access later


Journal title:
bulletin of the iranian mathematical society

Publisher: iranian mathematical society (ims)

ISSN 1017-060X

volume 41

issue 4 2015

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023